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Abstract

A new LVQ model has been proposed here. An exponential member-
ship function has been considered in this regard. The performance of
the new model in relation to other existing models has been studied ez-
perimentally with the help of an artificial data set as well as IRIS data.
Finally the proposed algorithm is applied on a satellite image data. The
proposed model has been found to provide satisfactory results with all
these data sets.
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1 Introduction

Clustering is an important technique used in discovering the inherent
structure present in the set of objects. Clustering algorithms attempt to or-
ganize unlabelled pattern vectors into clusters or natural groups such that
the points within a cluster are more similar to each other than to points be-
longing to different clusters. Vector Quantization refers to representing a
set of vectors by a small number of vectors. Thus the problem of clustering,
in some cases, may be taken to be a problem of finding vector quantization
of data set[3]. This is stated below elaborately.

Let the set of patterns X be {xy,x3,...,2;,...,X,} Where x; is the ith
pattern vector, X C R?, X is finite. Let the number of clusters be k. If the
clusters are represented by C;,Cy,...,Ck then

i) Ci#¢ fori=1,...,k
i) CiNCij=¢ i#3j
i) UL Ci=X
where ¢ represents null set and k > 2[2].
An optimization function for clustering is the minimization of the sum of
squares of within cluster distances, i.e.:

Zk: Y k-l

1=1 x€C;

where x is the input vector. The set of vectors V = (vq,va,..., Vi) is called
the codebook. v; is the representative vector for class C;. Thus the cluster
C; is quantized by the vector v;. The process of designing the codebook is
called Vector Quantization. Many techniques of vector quantization use
clustering approach[9].

Neural Networks have been employed in many clustering problems.
Among the existing models, the Self Organizing Feature Map of Koho-
nen [4,11] finds the topological structure hidden in the input data. Koho-
nen’s Learning Vector Quantizer (LVQ) [10] network can perform clus-
tering when the number of clusters present in the data set is known apriori.

In the following sections, we deal with unsupervised pattern classifica-
tion using neural network approach. In the unsupervised algorithms, no
information concerning the correct class is provided to the nets. Each new




pattern is presented only once and the weights are modified after each pre-
sentation. We assume everywhere that the number of clusters, k is known
apriori. The learning process used is known as Competitive Learning
Scheme. The basic idea underlying what is called competitive learning is
roughly as follows:

Initially, taking into consideration the set X, consider a sequence of vec-

tors X; where Xp41 = Xi1,...,X2n = Xp,Xon4+1 = X1 , and so on. Here ¢ is
the time coordinate, A set of variable reference vectors
{vit : vis € RP,i = 1,2,...,k}. are also taken where v;o’s have been

initialized in some proper way(random selection will suffice). If x; is com-
pared with each v;;_; at each successive instant ¢ (taken here to be ¢ =
1,2,...) then the best matching v;;_; is obtained by some distance mea-
sure d(x¢,Vit—1). If ¢ = ¢ be the best matching reference vector then

d(X¢, Vet-1) = miin d(X¢, Vig—1)

Then v.;_; is to be updated, so that it moves closer to x;. In the neural
network model the neigbouring cells in the output layer compete in their ac-
tivities such that in the process, vectors tend to become specifically ”tuned”
to different domains of the input variable x [5].

2 Existing Algorithms

2.1 Learning Vector Quantization

In the VQ the objective has been to find vectors vy, vy, ..., vi (k> 2)

such that,
Z f(xa Vi)

xeX

is minimized. Here v; is closest to x and f(x,v;) is a function of the distance
between x and v;. In the neural network based LVQ models, where at any
single instant only one input vector x from X is under consideration, the
researchers have tried to achieve the stated aim by modifying the vectors
V1,V2,..., Vi at each instant taking help of f(x,v;) [where v; is the winning
prototype for x] and f(x,v,) [where v, is the non-winning prototype for x].

LVQ has been associated in literature with a neural network architecture
that has been shown in Fig.1 . If X = {x1,%z,...,X,} C R? denotes the
unlabelled data, k denotes the number of clusters, then the input layer of




the network contains p nodes and the output layer contains k£ nodes. The
input layer is connected directly to the competition layer or the output layer.
The ith node in the output layer is associated with a weight vector v;. The
p components {v;;’s, j = 1,...,p of v; are often regarded as weights or
connection strengths of the edges that connect the p inputs to the node :.

The prototypes V = (vy,v,...,vk),v; € RP for 1 < i < k are the
unknown vector quantizers we seek. In this context learning refers to finding
values for {v;;}’s. When an input vector x is submitted to this network,
distances are computed between x and each v;. The output node 7 in the
output layer is the distance between x and v;. The output nodes compete,
a winner node (minimum distance) say ¢ is found, and the corresponding v,
is then updated using an update rule.

The LVQ algorithm is given below:

step 1. Given unlabelled data set X = {x;,X3,...,%,} C R? and number
of clusters k,

Fix N = maximum number of updating steps, and € > 0 where ¢
is the termination condition.

step 2. Initialize Vg = (v1,0,...,Vko) where each v;o € R?, and learning
rate op € (0,1).

Fort=1,2,...,N:
Forj=1,2,...,n
a. Find
min [}x; — Vi -] (1)

Let vee 1 be such that ||x; — v 1| = ming||x; — v, _1]|
b. Update the winner v ;_:

Vet = Ver-1 + @o1(X; — Vo) (2)




Next j

step 3. Compute
p k

E:=) " Virg = Vire-1]

=1 r=1
step 4. if E; < ¢ stop; Else adjust learning rate oy « ao(1-t/N).
Next t.
step 5. For each x in X if

I — vei-all = m}n lIx — vjz-1ll

-and mark x with label ¢

The update scheme used for modifying the winner has a simple geometric
interpretation which is shown in Fig.2 .

The winning prototype v.:—; is moved along the vector (x; — Veem1)
towards x;. The amount by which v, ,_; is shifted to arrive at vt depends
on the value of the learning rate parameter a;_; where a; € [0, 1).

2.1.1 Initialization

Vo = (v1,0,V2,0,--.,Vk0) € R? have to be initialized. There are sev-
eral initialization schemes. An initialization scheme used in the existing
algorithms, and also in the proposed method is described below:

For data set X = {x;3,%...,%x,} C RP. Let data point g and the initial
prototype i be x; = (Z14,%2g,...,%pg) and v; = (v1;, vy .. .Vp;)’ respec-
tively. Compute the feature ranges :

Minimum of feature

J: mjzmqin{qu}: i=12,...,p (3)

Maximum of feature

J: szm?x{qu}: J=12,...,p (4)




with this compute the jth component of the ¢th initial prototype v;; as:

M]-—mj

=) i=12. k=120 (5)

vii = mj+ (1= 1)(
Formula (4) disperses initial prototype values uniformly along each feature
range.

2.2 GLVQ

LVQ attempts to minimize an objective function that places all its em-
phasis on the winning prortotype for each data point. This is reflected in
eqn.(2) which alters only the winner. This, however ignores global infor-
mation about the geometric structure of the data that is represented in
the remaining (k — 1) distances from x to the non-winner prototypes. In
this section Generalized Learning Vector Quantization algorithm is
discussed. The algorithm is associated with the same neural network archi-
tecture, where the feature vectors x provide the inputs to the map and the
weight vectors play the role of the prototypes v;. The learning rule associ-
ated with GLVQ is obtained by minimizing a cost function which measures
a locally weighted error of the input with respect to the winning prototype.
Mathematically this is explained below.

Let x € 7RP be an input vector. Let J be the cost function which
measures the locally weighted mismatch of x with respect to the winner.

k
j(X;VIv'“?vk) = Z g7‘||x_v7‘”2 (6)
r=1
1 if i = ming ||x — vgl| ]
9i = ——L1—— otherwise 1<i<k (7)
D= lx=vili?

Where X = {x;,...,X,} is a set of inputs. The objective of the GLVQ
is to find a set of k v.’s, say V = {v,}, such that the locally weighted error
functional 7 is minimized.

The update rules for solving eqn.(3) based on minimization of J [6] are:



for winner prototype ¢,

D? - D + [[x = vig|f?

L ) - vier)  (80)

Vie = Vige1 + oo (

and for non-winner node j,

2
x"'-'_——"'——————Vi - hy . .
(“ D2,t 1” )(X—Vj,t—l) fO’I‘_’]:l,Q’.“’k ]752

(8b)

Vit = Vjii-1 + 0

where x is the current input vector and

k
D= Y x—veeal?

r=1

Tables 1 and 2 show the resultof 7' = 500 iterations of GLVQ with the
initial learning rate ag = 0.6 on IRIS and IRIS/10 respectively, where in
IRIS/10 the feature vectors of IRIS are scaled by a factor of 10.

The results show that the GLVQ algorithm doesn’t work properly for the
normalized data. For some scaling of data, it may happen that the change in
the winner prototype is less than changes that are made to the other (k—1)
prototypes. So the non-winner prototypes will be pulled towards the data
more strongly than the winner prototypes. This results in all prototypes
migrating to the same point in R?, as they did for IRIS/10 [6),[7].

2.3 Fuzzy algorithms for learning vector quantization

The algorithms are based on the minimization of a fuzzy objective func-
tion, formed as the weighted sum of the squared euclidean distances between
each input vector and the prototypes. Assuming that x is the input vector,
v; is the winning prototype, and £ is the number of clusters, the update
equation for the prototypes can be derived by minimizing,

k

J = Z Usr ||x—-v,”2 (9)

r=1




where u;;, = wui(z),r = 1,2,...,k is a set of generalized membership
functions, which regulate the competition between the prototypes, v, , r =
1,2,...,k for the input x. The term generalized membership functions is
used to indicate that their form can be selected apriori according to some
intuitively reasonable criteria [7].

The development of genuinely competitive learning vector quantization
algorithm requires the selection of the generalized membership functions
assigned to the prototypes. A fair competition among the prototypes is
guaranteed if the generalized membership function assigned to each proto-

type:

e is invariant to the magnitude of input vectors.

is equal to unity if the prototype is the winner.

takes the value between 1 and 0 if the prototype is not a winner.

e approaches zero if the prototype is not a winner and its distance from
the input vector approaches infinity [7].

Some fuzzy algorithms for LVQ are described below.

2.3.1 FALVQ

Assuming x is the input vector and v; is the winning prototype, i.e.,
= vill> < llx = v.[I> Vv, # v

the above mentioned conditions are satisfied by the objective function de-
fined by eqn.(9) with

1 ifr=¢

Ujp = ‘ 10
. — L ifr#i (10)
14 X=Vr

Jix—v; )2

According to this definition, u;, decreases from a value close to % to 0 as
lx — v.||? increases from a value slightly higher than ||x — v;||? to infinity.




The objective function 7 is, therefore:

k
1
J = lx-vil® + Z(——————H e Ix el (11)
r#i lix—vill

The FALVQ updation rules are derived by minimizing the above objective
function using the gradient descent method [7]. If x is the input vector, the
winning prototype v; can be updated by :

k
Av; = a(x—v)) (1 + Z 1- u,’r)2 ) (12a)
r#i
While the non-winning prototypes v; # v; can be updated by :

Av; = a(x-vV;) u?j (12b)

The adaption of the prototype during the learning process depends on the
learning rate o € [0,1), which is a monotonically decreasing function of
the number of iterations ¢ defined as @ = a(t) = ao(1 —t/N), where og
is the initial value of the learning rate and N the total number of iterations,
predetermined for the learning process.

2.3.2 Other Fuzzy Algorithms

As seen in the previous section, u; = 1 if v, = v;, where v; is the
winning prototype, that is, ||x — vi||* = miny,ev [|x = vj||%. K v, # v,
then Hﬁ:—::—H:— > 1 Vv, # v; and therefore u;, < % Since u;, € (0, %) Vr £
the function u;, described in eqn.(10) favours rather strongly the winning
prototype and hence there is a bias inherent in the definition of u;, towards
the winner. So, the weight of ||x — v.|| in J lies between 0 and 3+ In other
words, the contribution of ||x — v,||?> towards J is restricted, reducing the
competitive effect of the non-winner.

The non-winning prototypes can be made more competitive by introduc-
ing a new set of generalized membership functions such that, if v, # wv;,
u;r takes the values in the interval (0, 3,), where 8, > %
This is done by introducing a new set of generalized membership functions

of the form




1 ifr=1

Uir = —xlﬁ if r ;é 1 (13)
I+ Ben vy

where D(x,v; € V) is a differentiable function of ||x — v;||?, v; € V such

that D(x,v; € V) > minyev ||x— vJ||2 where miny ev|lx-v;|* = [x-

v;||?, if v; is the winning prototype uir in eqn.(13) can also be written as,

1 ifr=1
L — 1 . .
Uiy = +HX—Vr"2 =L ifr ?é 1
lIx—vill? “ D%V, €V)
112
Thus the value of 3, depends on the ratio of DL%%UVT
The three existing algorithms [7] using this concept are stated below:

Harmonic FALVQ:

HmeD&&eV)= yopTEE =} T r——T
N (%, V]ev k =1 lx—vji|
The updation rule obtained using the same objective function as (9) are :

2
X — Vv,
Av; = a (X Vi (1+ Z Uiy (Il'l_XT”E)Z) (140‘)
r#z ¢
for the winning prototype and
o (emv) (4 130 g (22wl gy
Hx vl

r;éz

for the non-winning prototypes v; # v;.

Geometric FALVQ:
Here D(x,v; € V) = Dg(x,v;€V) = ( H_I;:l lIx — v;||? )%

The update equations are :

Avi = afx-v) (L4 1 Pug - E2¥) g
2 =il
10




for the winner prototype and

llx = v |I?

k
1
- oa(x—vi) (0 4+ LS w1
Avj = alx=vi) (o + 3 2wl - uin) e

r#i

for the non-winner prototype v; # v;

) (150)

Arithmetic FALVQ:
Here D(x,v; € V) = Dy(x,v;€V) = £ 2?:1 [lx = ;2

The update equations are:

k

1
Avi = a(x-vi) (1 + ¢ > (1 - uir)?) (16a)
r#i
for the winner prototype and
1 K
Av; = a(x-v;j) (uf] + z Z(l — u;r)?) (16b)
r#i

for the non-winner prototype v; # v;

The analysis of the algorithms using harmonic, geometric and arithmetic
mean are done in [7]. In both the cases of Harmonic FALVQ and Geometric
FALVQ, updation equations are such that, if |x — v,[|2 > |jx — vi||?, the
updation of the winning prototype towards input x is increased, while on
the other hand if ||x — v,||* & |[x — v;||? the effect of the input & on the win-
ning prototype is inhibited i.e. the updation of the winner towards z is de-
creased.Again u;(1—u;,) in eqn(15a) is an increasing function if 0 < u;, < %
and decreasing function if u;, > % Since in the geometric FALVQ u;, > %
when ||x — v, ||? is sufficiently close to ||x — v;||?, u;r(1 — u;;) decreases as the
non-winning prototype v, approaches v; ,while u2 in Harmonic FALVQ is
monotonically increasing function of u;,. Thus the non-winning prototypes
close to the winning prototype v; results in stronger inhibition of its adap-
tion when the Geometric FALVQ is used and so Geometric FALVQ results
in stronger competition. In Arithmetic FALVQ, though each input x has
a stronger effect on winner than the non winner(updation of the winning

11




prototype is greater than the updation of non-winner prototype), however
difference between u; and 1 is not significant, so Arithmetic FALVQ can’t
discriminate between prototypes which are similar.

3 Proposed Method

The generalized membership functions used in the algorithms HFALVQ,
GFALVQ, AFALVQ are of the form shown in eqn.(13), where the value of
ui, lies between (0, 3,) for r # ¢ and G, > % The value of 3, depends on
the ratio of 1—)”(3;:;—"'6”%—) However, the ratio varies from problem to problem
and cannot be made equal to zero. So, the value of 8, cannot reach 1 and
hence there always exists a bias, inherent in the definition of u;,. Infact u;,
is not a continuous function in all these cases. Again, it was experimentally
found that these existing algorithms, though work sufficiently well for the
IRIS data set , where there are 3 equal classes of 50 data each, they fail
for the data set where unequal sized classes present. For these cases the
cluster centers produced by the algorithms are very much different from the
physical cluster centers.

So a new algorithm has to be developed that works equally well for the data
set having equal sized classes and at the same time, for unequal classes pro-
duce a better cluster centers which are close to the physical cluster centers.

To remove the bias in u; completely a new set of generalized meme-
bership functions is chosen that satisfies the four conditions for a genuinely
competitive learning vector quantization. The new generalized membership
function is :

Te—TY) (17)
This is a continuous function in (0, 1].

The objective function J is taken to be same as before:

k
T = > uirlle — v,)?

r=1

12




where vy,va,..., Vi € RP are the set of prototypes, k is the number of clus-
ters and k£ > 2

The update equations for the winning prototypes and the non-winning proto-
types are derived by minimizing J and using the u;, as given in the eqn(17).

The derivation of the updation equation for the winning prototype:

k k
T = Y uirllx=ve|? = fx = vill2+ Y wirllx - v, |2
r=1 r#l

Differentiating, J with respect to the winning prototype v; gives
8L = 2x—vi)+ - (Thaiwirllx = vol|?)
= =2(x - Vi) + Tha( il - vo[|?)
= —2(x = vi) + Db wir (5 (- 2l )lix — v, |12
= —2x-vi)+ ¥k, Uir(aiw(“”x__lv—,.”r))”x - v|*
= =2(x = i) = Thys ir st % = v |
= —2x-vi)-25k, u,-,(H—’)%}:—:H;-f(x —v;)

—2(1+ Tk v (=) (x - vi)

13




Derivation of the updation equation ofthe non-winning prototype:
Differentiating J with respect to non-winning prototypes v;, j # ¢,gives

k
%’% = 53_](”)( - V,‘“2 + Er;l_-i Uir”X - V.,.||2)
= 52 (wijllx = vil12 + Tk wirllx = v, |J?)
= (2-u)lx - vill2 + i = (Ix - v;l|?)
ov; "t J 4 Bv; i
= wi( el = 12 - 2ui(x - v;)
= 2“:‘]'”(:::‘:" Ix — v;lI? = 2u;;(x — v;)
—v.l2

So,the updation equation of the winning prototype is:

vi(t+1) = vi(t) + Av;

where o7
AV{ = —a 8_V;
or,
' Lo =R,
Av; = a(1+zuzr(” -V, “2) )(X—V,') (180')
r#i t

The updation equation for the non-winning prototype is:

vi(t+1) = v;(t) + Av;

where

, 0T
Av; = o —
7T dv;
Here, the sign is taken positive to make the updated v; move closer to x.

So,

Av; = d'u; (” —vil’? - 1)(x-v;) 18b
J 4] ||X v; ”2 J ( )
where @/ = %7 and « is the learning rate.
14




The comparison between the updation equation of the winning and the
non-winning prototype is based on the observation that,

x—v; |2 x—v;||2 x—v|]?
(i) < wi(Eee) + S e (Bl

Ix—v;
—v,;||? k ~—Vy 2
= w(fy) < ThauwfEdy

—v,f?

k vr 2
= (o) - uy < Thaue(Eh)? +1

= u((E=dh) - 1) < 1+ Sy (19)

Clearly, eqn.(19) indicates that the input vector z has a more signifi-
cant effect on the winning prototype i.e. the updation for the winner is
greater than the updation for the non-winner.

The adaptation of the winning prototype v; can be investigated by study-
ing the term Zf# uir(%l;:—::H;V in eqn.(18a) which represents the effect of
the non-winning prototypes. Assume that v, is the non-winning prototype
such that ||x — v,||2 > [|x — v||%. According to the defn. of u;,, in this case,
when r # 4, u;; — 0. Hence uiT(H—:—:—%:-llll;)z — 0. So, Av; given by eqn.(18a)
is small. However, if ||x — v,||* ~ [|x - vi||?, then u; — 1. So, Av; in-
creases. In summary, the presence of v,, such that ||x — v,||? = ||x — v;||?
increases the updation of the winning prototype towards the input x, while
the presence of v, such that ||x —v,||2 > ||x —v;||?decreases the updation of

the winning prototype towards x. This method of competition is intuitively
reasonable.

15




The algorithm can be summarized as folows:

1. Select the codebook of size k; fix ag, V; set t = 0;
randomly generate the initial set of prototypes V = (v, vo,..., Vi)

2. Calculate o = ap(1 — %)
3. For each input vector x :

o find [|x - vil|* = miny, ev{llx - v:||*}
e evaluate u; according to eqn.(17).

¢ update winning prototype v; and the non-winning prototypes
v; # v; according to eqn.(18a) and (18b) respectively.

4. if t <N ,thent =1+ 1 and go to step 2.

The performance of the of the existing algorithms for the data set hav-
ing unequal sized classes is poor (section 4). The cluster centers pro-
duced by them are away from the class means. This is because the up-
dation for the non-winner prototypes for these methods, given by equations
(12b),(14b),(15b) and (16b) are comparatively large. So, in the initial phase
of the learning process the total updation for the prototype vector of the
smaller class, as the non-winner(when x belonging to the larger class is
processed) is much larger than the total updation, as the winner(when x
corresponding to the smaller class is processed). So the prototype corre-
sponding to the smaller class is being pulled away from the physical class
mean, towards the larger class.

We show below, that the non-winner updation for the proposed method
is comparatively smaller than those for the existing methods, thus reducing
the displacement of the cluster center for the smaller class from its physical
class mean. )

For the proposed method u,-j(llllfc—:“',ﬁlllg— —1) in eqn.(18b) with u,; specified
by eqn.(17) has maximum value of % ~ 0.36.During the initial phase of the
learning process, ||x — v,||* = [|x — ;|| and so, in this phase the value
of u;; for Harmonic FALVQ, Geometric FALVQ and Arithmetic FALVQ
will be greater than §. So, in Av; given by eqn.(14b),(15b),(16b) the term
ufj > % = .25. So, in many cases, it happens that for these algorithms,
the value of the term contributing for the updation of the non-winner is

16




greater than .36 or approximately %, that is, Av; for these is greater than
the Av; for the proposed method. Due to this, the non-winner prototype
will be pulled more towards x by these algorithms than the proposed one.
In FALVQ u;, € (0,1). So, v < 1. Hence the difference between Av; for
FALVQ and the proposed method is not very significant. However, as al-
ready stated, the bias present in the definition of u;, of FALVQ detoriorates
the performance of FALVQ.

The proposed method is also not affected by scaling of data. Hence this
is scale invariant in the sense of the following proposition.

Proposition :

Let X = {x3,X2,...,X,} € R? and

let Vo = (v1,0,V2,05.-+5Vkp), Vio € RP be a set of initial prototypes.

Let 7 be fixed positive number and define sets of scaled data and initial
prototypes by:

Y ={y1,y2,.-,¥n} = 7X = {rx1,7X3,...,7X,} and

Wo = (W1,0,W2,0,...,Wko) = TVo = (TV1,0,TV20,. .-, TVk0)

Then applying the proposed method to X, initialized by Vy, is equivalent
to applying the proposed method to Y, initailized by Wy, in the sense that

Wit =TV, :j:1,2,...,k andt:O,l,...

Proof: We initially show that the membership values {u.} for X and Y are
identical, because they involve ratios of norm values, so the scaling factor 7
cancels out, just as in

ly — w,|? Irx — v, |2
exp(l — 2=y pppq - ITXZ TVRIE
=y =w?) = P )
I — v, 12
= exp(l
= =

We use induction to prove the proposition. The result holds for ¢ = 0 by
hypothesis. We now assume it to hold for arbitrary ¢t — 1, and show that it
holds for ¢.
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By eqn.(18a)

Iy = wra-all® 2

k
Wit = Wi +a/(1+ Z uir( Wiitl? )Ny — Wi-1)
1,0~

rii lly —
for the winner prototype.
So,
Wie = Wi+ (1+ Tk, uw(}}li'ﬁj: 11” ))(Tx = TVi4-1)

_ 2
= wi-1+a(1+ Zf# uir(llz_z:’:::” )*)r(x - Vit-1)

= X—Vrt—1 .
= TV +a'T 1+E,¢,u"( i 1” H(x = vit-1)

= [Vzt 1+a(1+zr¢luzr = Vrt=l ))(x—vi,t—l)]

=il
since u;, is independent of

Wit =TVt

By eqn.(18b)

ly = w; -1l

Wj,t = Wj,t—-l + aI’IMJ( ||y - w; t._]||2

-1y - wjt-1)

for non-winner prototype j # ¢
So,

) _ ) 1 llrx=rvy e a]l® .
Wit = Wi+ alug( Frx=viell2 D(mx = 7vj4-1)
= Vi1 + ol .,.(llx—"'z—lll2 -1) .

= Jit=1 T O U5 —Lﬁf”x-v,",_]” (x = Vjt-1)

v 2
= 7[vjam1+ ui (et — 1)(x - vje)]
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since u;; is independent of 7
wt=Tvje forj#i

So, for each t,
Wit = TVt

Hence the proposition.

4 Experimental Results and Comparison

In order to judge the performance of the algorithms, we have used the
following measures:

e number of misclassifications where the classification of each data point
is known.

¢ a measure Z (named as "total distortion”) which is defined as:

k
Z=> % uplx - v.|?
xEX r=1
. ( Note that u;, = 1 for r = i for all the algorithms. When 7 # i each
algorithm provides its own value of u;,.)

4.1 Results on IRIS data

The GLVQ, FALVQ, Harmonic FALVQ, Geometric FALVQ, Arithmetic
FALVQ and the proposed algorithms were tested using Anderson’s IRIS data
set, which has extensively been used for evaluating the performance of the
pattern classification algorithms[1].This data set contains 150 feature vec-
tors of length four, which belong to 3 classes representing different IRIS
subspecies. Each class contains 50 feature vectors. One of the 3 classes is
well seperated from the other two, which are not easily seperable due to the
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existence of similar vectors. The performance of the algorithms, tested on
this data set is evaluated by counting the number of the classification errors,
i.e., the number of feature vectors that are assigned to a wrong cluster by
the algorithms[6,7]. '

The raw IRIS data set was classified by the GLVQ, different FALVQ
algorithms, and the proposed algorithms with N = 500 and different initial
values of the learnimg rate. Table 1 shows the corresponding results.

The GLVQ, FALVQ, Harmonic FALVQ, resulted in 16 or 17 classification
error when they are applied on the raw IRIS data set. This is typical when
the IRIS data set is classified by the unsupervised algorithms. The proposed
method also has 16 or 17 classification errors, with the data set.Geometric
FALVQ has a slightly better performance, as it misclassified 12 feature vec-
tors. The Arithmetic FALVQ algorithm is clearly inferior to the others,
since in this case it has a classification error 23.

Scaled IRIS data(IRIS/10) is also used for testing the algorithms. The
GLVQ algorithm being sensitive to scaling of data, resulted in 50 classifica-
tion errors with o = 0.6. While the FALVQ, Harmonic FALVQ, Geometric
FALVQ, Arithmetic FALVQ are scale invariant. The proposed algorithm,
as already proved is also scale invariant. Hence their performances are not
effected when scaled IRIS data is used.

The performance of these algorithms are also tested using data set con-
taining unequal sized classes. From the IRIS data set, 3 classes are formed,
where class 1, class 2, class 3 contain 50, 30, 10 feature vectors respectively
taken from the corresponding class 1, class 2,class 3 feature vectors of the
IRIS data set. So the number of feature vectors in this data set is 90. The al-
gorithms are tested on this data set of unequal sized class with N = 500 and
ag = 0.05. Proposed method along with FALVQ gives the best performance,
as it misclassified only 2 feature vectors. Harmonic FALVQ misclassified 4
feature vectors. The performance of the Arithmetic FALVQ is worst since
it misclassified 26 feature vectors. Table 3 shows the corresponding results.

4.2 Results on Artificial Data Sets generated in R?

The performance of the algorithms are also tested using
Artificial Data sets. The artificial data set contains two classes which are of
unequal sizes. Two classes are generated using 1000 points. The points are
uniformly distributed in each class. The class 1 has an apriori probability of
0.8, while the class 2 has an apriori probability of 0.2. So class 1 has larger
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number of points than the class 2. The number of points in class 1 is 790,
whereas in class 2 it is 210. Figures 3, 10 and 17 show the two classes with
interclass distances 0.5, 0.2 and 0.01 units respectively. The class 1 has a
radius of 2 unit with center at (0,0). Class 2 has a radius of 1 unit with
center at (3+interclass distance,0). The physical class means of the classes
are therefore, their centers.

The performances of the algorithms on these data sets are shown in tables
4, 5 and 6, with N = 500 and ag = 0.005. For interclass distance=0.5, the
proposed method classified all feature vectors correctly. Also for interclass
distances 0.2 and 0.01, the proposed method gives the best performance by
misclassifying 4 and 22 feature vectors respectively. As can be seen from the
tables 4, 5 and 6, the number of misclassifications by the proposed method is
less than the other algorithms. For all these data sets, the next best perfor-
mance is given by FALVQ and the worst performance is given by Arithmetic
FALVQ. Tables 7, 8 and 9 show the list of the cluster centers obtained by
the algorithms for the artificial data sets. with N = 500 and ap = 0.005.
Figures. 24, 25 and 26 give the graphical representation of the same cluster
centers. In the graph, cluster centers produced by an algorithm is marked
by a number. The left position of the number represents the center for the
class 1, while the right position is the center for class 2.

It can be seen that, for the existing methods the cluster center for class
2 has been pulled towards the larger class, while the proposed algorithm
obtains the cluster center for class 2 closest to its class means.

The performance of the algorithms is also tested using the distortion
measure Z. Table 10 shows the total distortion obtained by different algo-
rithms on different data sets. The values are obtained after N = 500 and
with ag = 0.005. The distortion obtained using the proposed algorithm is
minimum among all algorithms, for each of the data set.

4.3 Results on IRS Imagery

The performance of the proposed algorithm is tested on IRS Imagery.
IRS stands for Indian Remote Sensing Satellite. The data used for this work,
is taken from the satellite IRS-1B. The satellite is equipped with 2 different
sensors-LISS I and LISS II. Data used for this work is from LISS II sensor.
LISS II has a focal length of 324.4 meter with a spectral range between 0.45
-0.86 micrometer. The whole spectral range has been divided into 4 bands,
namely Blue (0.45-0.52 um), Green (0.52—0.59 um), Red (0.62—0.68um),
Infrared (0.77 — 0.86um).
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The scene used for evaluating the performance of the algorithm is Cal-
cutta scene. 256 x 256 image for each of the four bands are taken. Figures
27, 28, 29 and 30 show the corresponding Band 1, Band 2, Band 3, Band 4
images. The region primarily consists of 6 different types of landcovers. The
6 classes are Clear water, Turbid Water, Concrete Structures, Habitation,
Vegetation and Open space.

The constituents of these classes are described below.

1. Pure Water: This class contains pond water.
2. Turbid Water: This class contains rivers.
3. Concrete: This class contains buildings, railway lines, roads.

4. Habitation: This class basically consists of suburban and rural habi-
tation i.e. concrete structures but comparatively less in density.

5. Vegetation: This class represents the crop area and the forest area.
6. Open Space: This class contains Barren land , sand.

The proposed algorithm is used for clustering the pixels in this IRS image,
with number of clusters k& taken to be 6,54 and 3. The best results are
obtained with k¥ = 3. Reconstructed image with £ = 3 is shown in the
fig.31. Each of the 3 classes in this image is shown seperately in Figures 32,
33 and 34. It has been possible to label 2 clusters among 3 clusters in the
images. These 2 classes which can be clearly identified are Water and Land,
with the third class consisting of very few pixels (noise pixels). The results
with k =4, k = 5, kK = 6 are however not satisfactory.

5 Conclusions

Here we have presented a new fuzzy learning vector quantization algo-
rithm. The algorithm uses a membership function which is continuous on
(0,1] and hence, unlike the other algorithms, it removes the inherent bias
towards the winner. This helps in increasing the competitive effect among
the prototypes. The large non-winner updation, which was present in other
algorithms, is also eliminated. Hence the performance of this algorithm for
a data set having unequal sized classes is much better. The algorithm is
tested using different number of iterations, and also different learning rates.
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The results obtained in all these cases are same. Total distortion obtained
by this algorithm is also the least. The proposed algorithm assumes that
the number of clusters present in the data set is greater than equal to 2.
Experiments are conducted with data sets which are non-overlapping, where
the algorithm performs better than all other existing methods. Unlike the
previous algorithms, the proposed algorithm requires slightly more compu-
tations as it requires to compute exponential membership functions.

A possible way for the improvement in all these algorithms is to find
the concrete mathematical setup with theorems and proofs which judge the
performance of the algorithms and use the results for further modifications.
This however is is not attempted here.

6 Tables and Figures

TABLE 1: Performance of the algorithms on the IRIS data set. N=500.

Algorithm op | Classification Errors
GLVQ 0.5 17
0.6 17
0.05 17
FALVQ 0.05 17
0.005 16
Harmonic FALVQ | 0.05 16
0.005 16
Geometric FALVQ | 0.05 12
0.005 12
Arithmetic FALVQ | 0.05 23
0.005 23
Proposed Method | 0.05 17
0.005 16
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TABLE 2: Performance of the algorithms on the scaled IRIS
data(IRIS/10), N=500.

Algorithms oy | Classification Errors
GLVQ 0.6 50
FALVQ 0.005 16
HFALVQ 0.005 16
GFALVQ 0.005 12
AFALVQ 0.005 23
Proposed Method | 0.005 17

TABLE 3: Performance of the algorithms on 3 unequal sized classes with
feature vectors taken from IRIS data set. N=500.
Class 1 contains 50 vectors.
Class 2 contains 30 vectors.
Class 3 contains 10 vectors.

ag = 0.005
Algorithms Classification Error
GLVQ 2
FALVQ 2
Harmonic FALVQ 4
Geometric FALVQ 18
Arithmetic FALVQ 26
Proposed Method 2

TABLE 4:Performance of the algorithms on on artficial data set with 2
classes of unequal sizes. Interclass distance = 0.5, ag = 0.005, N = 500.

Algorithms Classification Errors
GLVQ 22
FALVQ 22
Harmonic FALVQ 32
Geometric FALVQ 62
Arithmetic FALVQ 128
Proposed Method 0
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TABLE 5: Performance of the algorithms on artificial data set with 2
classes of unequal sizes, Interclass distance = 0.2, ag = 0.005, N=500.

Algorithms Classification Errors
GLVQ 47
FALVQ 45
Harmonic FALVQ 53
Geometric FALVQ 99
Arithmetic FALVQ 150
Proposed Method 4

TABLE 6: Performance of the algorithms on artificial data set with 2
classes of unequal sizes, Interclass distance = 0.01, agp = 0.005, N=500.

Algorithms Classification Errors
GLVQ 92
FALVQ 74
Harmonic FALVQ 85
Geometric FALVQ 11
Arithmetic FALVQ 167
Proposed Method 22

TABLE 7: Actual class centres and cluster centres produced by different
algorithms on the artificial data set with interclass distance = 0.5,

ap = 0.005, N = 500.

Algorithms Cluster centers

cluster 1 cluster 2
GLVQ (-0.038,0.027) | (3.24,0.027)
FALVQ (-0.064,0.014) | (3.27,0.028)
Harmonic FALVQ | (-0.119,0.011) | (3.164,0.029)
Geometric FALVQ | (-0.058,0.002) | (2.62,0.026)
Arithmetic FALVQ | (0.14,-0.003) | (1.628,0.051)
Proposed Method (0.18,0.02) (3.81,0.022)

Actual Class Center (0,0) (3.5,0)
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Table 8 : Actual class centers and cluster centers produced by different
algorithms on the artificial data set with inter class distance = 0.2,
N =500, ap = 0.005

Algorithms Cluster centers
cluster 1 cluster 2

GLVQ (-0.087,0.013) | (2.81,0.037)
FALVQ (-0.108,0.011) | (2.88,0.033)
Harmonic FALVQ | (-0.15,0.0108) | (2.79,0.03)
Geometric FALVQ | (-0.086,-0.004) | (2.25,0.044)
Arithmetic FALVQ (0.10,-0.004) | (1.49,0.050)
Proposed Method (0.18,0.02) | (3.48,0.002)

Actual Class Centers (0,0) (3.2,0)

Table 9 : Actual Class centers and cluster centers produced by different
algorithms on the artificial data set with inter class distance = 0.01,
N =500, ap = 0.005

Algorithms Cluster centers
cluster 1 cluster 2
GLVQ (-0.168,-0.021) | (2.44,0.085)
FALVQ (-0.154,0.002) | (2.6,0.052)
Harmonic FALVQ (-0.18,0.003) (2.53,0.04)
Geometric FALVQ | (-0.09,-0.007) | (2.07,0.05)
Arithmetic FALVQ | (0.07,0.005) | (1.404,0.036)
Proposed Method (0.131,0.019) | (3.12,0.010)
Actual Class centers (0,0) (3.01,0)

Table 10 :Distortion produced by different algorithms, N=500, ap = 0.005,

6 is the interclass distance in the artificial data set.

Algorithms IRIS Artificial data set
6=05] 6=0.2 | 6§=0.01
GLVQ 225.4 | 2073.96 | 2033.79 | 1997.93
FALVQ 216.48 | 2131.24 | 2065.13 | 2010.04
Harmonic FALVQ | 369.21 | 2648.21 | 2527.72 | 2438.23
Geometric FALVQ | 752.97 | 3446.47 | 3157.055 | 2978.22
Arithmetic FALVQ | 1162.73 | 4024.84 | 3620.17 | 3382.28
Proposed Method | 102.88 | 1360.21 | 1409.49 | 1432.13
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Table 11: Number of misclassifications produced by different algorithms on

different number of iterations, ag = 0.005,

Algorithms Number of Iterations, N
N=300 | N=500 | N=800
GLVQ 22 22 22
FALVQ 22 22 22
Harmonic FALVQ 32 32 32
Geometric FALVQ 62 62 62
Arithmetic FALVQ 128 128 128
Proposed Method 0 0 0

Table 12: Number of misclassifications produced by different algorithms on

different number of learning rates, N=500.

Algorithms learning rate, ag
ag = 0.003 | ap = 0.005 | op = 0.007

GLVQ 22 22 22

FALVQ 22 22 22
Harmonic FALVQ 32 32 32
Geometric FALVQ 62 62 62
Arithmetic FALVQ 128 128 128
Proposed Method 0 0 0

ap = 0.005.
Algorithm Trial
#1 | #2 | #3 | #4 | #5
Proposed Method | 0 0 0 0 0
27

Table 13: Number of misclassifications on different initializations, N=500,
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Fig 5! Perfornance of FALUQ algorithnm.,

interclass distance = 0.5

Fig & Performance of Harmnonic FALVUQ algorithn,
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Fig 7: Performanca of Geonatric FaLvqQ algorithn,

intaerclass distance = 0.5

Fig 8: Performance of Arithnetic FALYQ algorithn.
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Fig 9: Performance of the proposed algorithn.

intarclass distance = 0.8

Fig 10:Artificial data set with two classes of
unequal size.
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Fig 11! Performance of GLUQ algorithn.

interclass distance = 0.2

Fig 12: Performance of FALUQ algorithn.
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Fig 13: Performance of Harmonic FALUQ algorithm.

intarclass distance = 0.2

Fig 14: Performance of Geometric FALUQ algorithn,

interclass distance = 0.2




,.,-.++ +

iy N

- '.: s

..'.~l #.’& 3

3 AN A Fh

. ‘ &‘* + "3"' 4# “
S0 TS O g b
.y ++* + r‘ Fry
'fi,}?‘ 4y e,

>t
Fodbe
5 9
ToN
+
F

*™
¥
...#!
+,,z;
b
-
Y
o+

Py

o
&

Fig 15! Performance of Arithnetic FALVUQ algorithn

interclass distance = 0.2

Fig 14: Perfornance of the Proposed algorithnm.

interclass distance = 0.2




Fig 17:Artificial data set with two classes
of unequal size,

interclass distance = 0.01

Fig 18! Performnance of GLUQ algorithn.

intarclass distance = 0.01
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Fig 19! Performance of FALUQ algorithn.

interclass distance = 0.01

Fig 20: Perfornance of Harmonic FAaLuQ algorithn

interclass distance = 0.01




Fig 21: Perfornance of Geometric FALYUQ algorithn.

interclass distance = 0.0}

Fig 22:Parformance of Arithmnetic FALVQ algorithmn.

interclass distance = 0.01




Fig 23: Performance of the proposed algorithn.

interclass distance = 0.01
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Fig. 29: Original 256 x 256 Band-3 Image

Fig. 30: Original 256 x 256 Band-4 Image
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Fig. 33: "Land" class obtained with k=3 Fig. 34: Noisc obtained in the third class with k=3
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